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Basic Principles of Interaction of Waves

Periodic waves characteristic:

 Frequency : number of waves (cycles) per unit time – =cycles/time.

[] = 1/sec = Hz.

 Period T: time required for one complete cycle  – T=1/=time/cycle. [T] = sec.

 Amplitude A: maximum value of the wave during cycle.

 Wavelength : the length of one complete cycle. [] = m, nm, Å.
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Basic Principles of Interaction of Waves

Consider two waves with the same wavelength and amplitude but displaced a 
distance x0.

The phase shift:
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When similar waves combine, the outcome can be constructive or destructive interference



Superposition of Waves

Resulting wave is algebraic sum of the amplitudes at each point

Small difference in phase Large difference in phase



Superposition of Waves

Thomas Young's diagram of double slit interference (1803)
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The discovery of X-ray diffraction and its use as a 
probe of the structure of matter

First diffraction pattern from NaCl crystal

Max von Laue

• The reasoning: x-rays have a wavelength similar to 
the interatomic distances in crystals, and as a result, 
the crystal should act as a diffraction grating.

• 1911, von Laue suggested to one of his research 
assistants, Walter Friedrich, and a doctoral student, 
Paul Knipping, that they try out x-rays on crystals.

• April 1912, von Laue, Friedrich and Knipping had 
performed their pioneering experiment on copper 
sulfate.



The discovery of X-ray diffraction and its use as 
a probe of the structure of matter

• They found that if the interatomic distances in the 
crystal are known, then the wavelength of the X-rays 
can be measured, and alternatively, if the wavelength 
is known, then X-ray diffraction experiments can be 
used to determine the interplanar spacings of a 
crystal.

• The three were awarded Nobel Prizes in Physics for 
their discoveries. 

ZnS Laue photographs along 
four-fold and three-fold axes

Friedrich & Knipping's improved set-up



The Laue Equations

If an X-ray beam impinges on a row of atoms, each atom can serve as a source of 
scattered X-rays.

The scattered X-rays will reinforce in certain directions to produce zero-, first-, and 
higher-order diffracted beams.



The Laue Equations

Consider 1D array of scatterers spaced a apart.

Let x-ray be incident with wavelength .
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The equations must be satisfied simultaneously, it is in general difficult to produce a diffracted 
beam with a fixed wavelength and a fixed crystal.

In 2D and 3D:



Lattice Planes



Bragg’s Law

sin2dBCAB 



Bragg’s Law

If the path AB + CD is a multiple of the x-ray wavelength λ, then two waves will 
give a constructive interference:

 nd sin2
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The diffracted waves will interfere destructively if equation is not satisfied.

Equation is called the Bragg equation and the angle θ is the Bragg angle.
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Bragg’s Law

The incident beam and diffracted beam are always coplanar.

The angle between the diffracted beam and the transmitted beam is always 2.

Rewrite Bragg’s law:
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Reciprocal lattice and Diffraction
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Reciprocal lattice and Diffraction

hkl

hkl
d

ss 1sin2 *0 


d








Sphere of Reflection – Ewald Sphere
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Sphere of Reflection – Ewald Sphere



 nd sin2

Silicon lattice constant:
aSi = 5.43 Å

X-ray wavelength:
 = 1.5406 Å 2
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For cubic crystal:
Bragg’s law:

Kinematical x-ray diffraction



Two perovskites: SrTiO3 and CaTiO3

Differences:
 Peak position – d-spacing.

 Peak intensity – atom type: Ca vs Sr.

aSTO = 3.905 Å

aCTO = 3.795 Å

O Ti

Sr/Ca



Scattering by an Electron

Elementary scattering unit in an atom 
is electron

Classical scattering by a single free 
electron – Thomson scattering 
equation:

If R = few cm:
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Another way for electron to scatter is 
manifested in Compton effect.

Cullity p.127



Scattering by an Atom

electrononebyscatteredwavetheofamplitude

atomanbyscatteredwavetheofamplitude
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Atomic 
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Factor



Scattering by an Atom

Scattering by a group of electrons at positions rn:

Scattering factor per electron:

     dVife  rss 0/2exp

Assuming spherical symmetry for the charge 
distribution  = (r ) and taking origin at the center of 
the atom:
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Scattering by an Atom

electrononebyscatteredwavetheofamplitude
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The atomic scattering factor f = Z  for any 
atom in the forward direction (2 = 0): 
I(2=0) =Z2

As  increases f decreases  functional 
dependence of the decrease depends on 
the details of the distribution of electrons 
around an atom (sometimes called the 
form factor)

f is calculated using quantum mechanics



Electron vs nuclear density

Powder diffraction patterns collected using Mo K radiation and neutron diffraction



Scattering by an Atom



Scattering by a Unit Cell

electronsinglebyscatteredamplitude

cellunit in  atomsbyscatteredamplitude
hklF

h

a
ACd

dMCN

h

h





00

0012 sin2 

a

hx

ha

x

AC

AB
MCN

AC

AB
RBS















2
2

2

/

13
13

13












For atoms A & C

For atoms A & B

hu
a

hx



 2

2
13 

If atom B position: axu /

For 3D:  lwkvhu   2

phase



Scattering by a Unit Cell

We can write:
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Scattering by a Unit Cell

Examples

Unit cell has one atom at the origin

ffeF i  02

In this case the structure factor is independent of h, k and l ; it will decrease with f
as sin/ increases (higher-order reflections)



Scattering by a Unit Cell

Examples

Unit cell is base-centered
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Body-Centered Unit Cell

Examples

For body-centered cell
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Body-Centered Unit Cell

Examples

For body centered cell with different atoms:
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Face Centered Unit cell

The fcc crystal structure has atoms at 000, ½½0, ½0½ and 0½½:
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The Structure Factor

The structure factor contains the information regarding the types (f  ) and locations 
(u, v, w ) of atoms within a unit cell

A comparison of the observed and calculated structure factors is a common goal of 
X-ray structural analyses

The observed intensities must be corrected for experimental and geometric effects 
before these analyses can be performed

 





N
lwkvhui

nhkl
nnnefF

1

2

electronsingleabyscatteredamplitude

cellunitainatomsallbyscatteredamplitude
hklF



Integrated Intensity

Structural factors: determined by crystal structure

Specimen factors: shape, size, grain size and distribution, microstructure

Instrumental factors: radiation properties, focusing geometry, type of detector

Peak intensity depends on

We can say that: 𝐼 𝑞 ∝ 𝐹 𝑞 2



Integrated Intensity

K – scale factor, required to normalize calculated and measured intensities.

phkl – multiplicity factor. Accounts for the presence of symmetrically equivalent points in reciprocal lattice.

L – Lorentz multiplier, defined by diffraction geometry.

P – polarization factor. Account for partial polarization of electromagnetic wave.

A – absorption multiplier. Accounts for incident and diffracted beam absorption.

Thkl – preferred orientation factor. Accounts for deviation from complete random grain distribution.

Ehkl – extinction multiplier. Accounts for deviation from kinematical diffraction model.

Fhkl – the structure factor. Defined by crystal structure of the material
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The Multiplicity Factor

The multiplicity factor arises from the fact that in general there will be several sets 
of hkl -planes having different orientations in a crystal but with the same d and F 2

values

Evaluated by finding the number of variations in position and sign in h, k and l
and have planes with the same d and F 2

The value depends on hkl and crystal symmetry

For the highest cubic symmetry we have: 

111,111,111,111,111,111,111,111

110,101,110,011,011,101,110,101,011,011,101,110

100,001,010,010,001,100 p100 = 6

p110 = 12

p111=8



The Polarization Factor

The polarization factor p arises from the fact that an electron does not scatter 
along its direction of vibration

In other directions electrons radiate with an intensity proportional to (sin )2:

The polarization factor (assuming that the incident beam is unpolarized):
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The Lorentz-Polarization Factor

The Lorenz factor L depends on the measurement technique used and, for the 
diffractometer data obtained by the usual θ-2θ or ω-2θ scans, it can be written as

The combination of geometric corrections are lumped together into a single 
Lorentz-polarization (LP ) factor:

The effect of the LP factor is to decrease the 
intensity at intermediate angles and increase the 
intensity in the forward and backwards 
directions
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The Absorption Factor

Angle-dependent absorption within the sample itself will modify the observed 
intensity

• Absorption factor for thin 
specimens is given by:
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The Extinction Factor

primary extinction secondary extinction

Extinction lowers the observed intensity of very strong reflections from perfect 
crystals

In powder diffraction usually this factor is smaller than experimental errors and therefore neglected



The Temperature Factor

As atoms vibrate about their equilibrium positions in a crystal, the electron 
density is spread out over a larger volume 

This causes the atomic scattering factor to decrease with sin/ (or |S| = 
4sin/ )more rapidly than it would normally:
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Diffracted Beam Intensity
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For thin films:


