X-ray Diffraction

Interaction of Waves Reciprocal Lattice and Diffraction X-ray Scattering by Atoms The Integrated Intensity

Basic Principles of Interaction of Waves

Periodic waves characteristic:

- Frequency v: number of waves (cycles) per unit time -v = cycles/time.
- [v] = 1/sec = Hz.
- Period T: time required for one complete cycle -T=1/v=time/cycle. [T] = sec.
- Amplitude A: maximum value of the wave during cycle.
- Wavelength λ : the length of one complete cycle. $[\lambda] = m$, nm, Å.

Basic Principles of Interaction of Waves

• Consider two waves with the same wavelength and amplitude but displaced a distance x_0 .

When similar waves combine, the outcome can be constructive or destructive interference

Superposition of Waves

Resulting wave is algebraic sum of the amplitudes at each point

Superposition of Waves

d

Thomas Young's diagram of double slit interference (1803)

The angular spacing of the fringes is given by $\theta_f \approx \frac{\lambda}{d}$, where $\theta_f \ll 1$

The discovery of X-ray diffraction and its use as a probe of the structure of matter

- The reasoning: x-rays have a wavelength similar to the interatomic distances in crystals, and as a result, the crystal should act as a diffraction grating.
- 1911, von Laue suggested to one of his research assistants, Walter Friedrich, and a doctoral student, Paul Knipping, that they try out x-rays on crystals.
- April 1912, von Laue, Friedrich and Knipping had performed their pioneering experiment on copper sulfate.

Max von Laue

The discovery of X-ray diffraction and its use as a probe of the structure of matter

 They found that if the interatomic distances in the crystal are known, then the wavelength of the X-rays can be measured, and alternatively, if the wavelength is known, then X-ray diffraction experiments can be used to determine the interplanar spacings of a crystal.

 The three were awarded Nobel Prizes in Physics for their discoveries.

Friedrich & Knipping's improved set-up

ZnS Laue photographs along four-fold and three-fold axes

The Laue Equations

- If an X-ray beam impinges on a row of atoms, each atom can serve as a source of scattered X-rays.
- The scattered X-rays will reinforce in certain directions to produce zero-, first-, and higher-order diffracted beams.

The equations must be satisfied simultaneously, it is in general difficult to produce a diffracted beam with a fixed wavelength and a fixed crystal.

Bragg's Law

$AB + BC = 2d\sin\theta$

Bragg's Law

• If the path AB + CD is a multiple of the x-ray wavelength λ , then two waves will give a constructive interference:

The diffracted waves will interfere destructively if equation is not satisfied.

Equation is called the Bragg equation and the angle θ is the Bragg angle.

Bragg's Law

The incident beam and diffracted beam are always coplanar. The angle between the diffracted beam and the transmitted beam is always 2θ .

Reciprocal lattice and Diffraction

Reciprocal lattice and Diffraction

Sphere of Reflection – Ewald Sphere

Sphere of Reflection – Ewald Sphere

Kinematical x-ray diffraction

Scattering by an Atom

Scattering by a group of electrons at positions r_n :

Scattering factor per electron:

$$f_e = \int \exp\left[\left(2\pi i / \lambda\right)(\mathbf{s} - \mathbf{s}_0) \cdot \mathbf{r}\right] \rho \, dV$$

Assuming spherical symmetry for the charge distribution $\rho = \rho(r)$ and taking origin at the center of the atom:

$$f_e = \int_0^\infty 4\pi r^2 \rho(r) \frac{\sin kr}{kr} dr$$

For an atom containing several electrons:

$$F = \sum_{n} f_{en} = \sum_{n} \int_{0}^{\infty} 4\pi r^{2} \rho_{n}(r) \frac{\sin kr}{kr} dr \qquad k = \frac{4\pi \sin \theta}{\lambda}$$

$$\frac{f - \text{atomic scattering factor}}{f - \text{atomic scattering factor}} \qquad f \propto \frac{\sin \theta}{\lambda}$$
Calling Z the number of electrons per atom we get:

 $X_1 r_n$

 X_2

R

 $s - s_0$

S₀

$$\sum_{n} \int_{0}^{\infty} 4\pi r^{2} \rho_{n}(r) dr = Z$$

Scattering by an Atom

 $f = \frac{\text{amplitude of the wave scattered by an atom}}{\text{amplitude of the wave scattered by one electron}}$

- The atomic scattering factor f = Z for any atom in the forward direction (2θ = 0):
 I(2θ=0) = Z²
- As θ increases f decreases → functional dependence of the decrease depends on the details of the distribution of electrons around an atom (sometimes called the form factor)

f is calculated using quantum mechanics

Electron vs nuclear density

Powder diffraction patterns collected using Mo K α radiation and neutron diffraction

Scattering by an Atom

Atomic Scattering Factors*																		
(si	n θ)/λ	(A^{-1})	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0	1.1	1.2	1.3	1.4	1.5
	н	1	1.0	0.81	0.48	0.25	0.13	0.07	0.04	0.02	0.02	0.01	0.01					
]	He	2	2.0	1.83	1.45	1.06	0.74	0.52	0.36	0.25	0.18	0.13	0.10	0.07	0.05	0.04	0.03	0.03
]	Be	4	4.0	3.07	2.07	1.71	1.53	1.37	1.20	1.03	0.88	0.40	0.52	0.20	0.21	0.10		
]]	B	5	5.0	4.07	2.71	1.99	1.69	1.53	1.41	1.28	1.15	1.02	0.90	0.78	0.68	0.60		
	C N	6	6.0 7.0	5.13	3.58	2.50	1.95	1.69	1.54	1.43	1.32	1.22	1.11	1.01	0.91	0.82	0.74	0.66
	0	8	8.0	7.25	5.63	4.09	3.01	2.34	1.94	1.71	1.44	1.35	1.20	1.10	1.08	1.14		
	F	9	9.0	8.29	6.69	5.04	3.76	2.88	2.31	1.96	1.74	1.59	1.48	1.40	1.32	1.25		
	Ne	10	10.0	9.36	7.82	6.09	4.62	3.54	2.79	2.30	1.98	1.76	1.61	1.50	1.42	1.35	1.28	1.22
	Na Na+	11	10.0	9.76	8.39	6.93	5.51	4.29	3.40	2.78	2.31	2.00	1.78	1.63	1.52	1.44	1.37	1.31
	Mg	12	12.0	10.50	8.75	7.46	6.20	5.01	4.06	3.30	2.72	2.30	2.01	1.81	1.65	1.54		
	Al	13	13.0	11.23	9.16	7.88	6.77	5.69	4.71	3.88	3.21	2.71	2.32	2.05	1.83	1.69	1.57	1.48
	Si	14	14.0	12.16	9.67	8.22	7.20	6.24	5.31	4.47	3.75	3.16	2.69	2.35	2.07	1.87	1.71	1.60
	r S	15	15.0	14.33	10.34	8.99	7.83	7.05	6.31	5.56	4.20	4.15	3.56	3.07	2.55	2.10	1.07	1.75
	C l	17	17.0	15.33	12.00	9.44	8.07	7.29	6.64	5.96	5.27	4.60	4.00	3.47	3.02	2.65		
	Cl-	17	18.0	16.02	12.20	9.40	8.03	7.28	6.64	5.97	5.27	4.61	4.00	3.47	3.03	2.65	2.35	2.11
	A V	18	18.0	16.30	12.93	10.20	8.54	7.50 7.87	0.80 7 11	6.23 6.51	5.61 5.95	5.01	4.43	3.90	3.43	3.03	3.01	2 71
	Ca	20	20.0	17.33	14.32	11.71	9.64	8.26	7.38	6.75	6.21	5.70	5.19	4.69	4.21	3.77	3.37	3.03

(cont.)

* Reprinted from International Tables for X-Ray Crystallography, Vol. III, with the permission of the Editorial Commission of the International Tables. The values for elements 1–36 are computed from self-consistent or variational wave functions, while those for elements 37–92 are obtained from the Thomas-Fermi-Dirac statistical model. For values corresponding to ionized states, reference should be made to the International Tables.

 $F_{hkl} = \frac{\text{amplitude scattered by atoms in unit cell}}{\text{amplitude scattered by single electron}}$ For atoms A & C $\delta_{2'1'} = MCN = 2d_{h00}\sin\theta = \lambda$ $d_{h00} = AC = \frac{d}{h}$ 3' (h00)1' For atoms A & B M $\delta_{3'1'} = RBS = \frac{AB}{AC}MCN = \frac{AB}{AC}\lambda = \frac{x}{a/h}\lambda$ phase $\phi = 2\pi \frac{\delta}{\lambda}$ B \boldsymbol{A} $\phi_{3'1'} = 2\pi \frac{\delta_{3'1'}}{\lambda} = \frac{2\pi hx}{a}$ If atom B position: u = x/a $\phi_{3'1'} = \frac{2\pi hx}{a} = 2\pi hu$ 3 -x-For 3D: $\phi == 2\pi (hu + kv + lw)$

We can write:

 $Ae^{i\phi} = fe^{2\pi i(hu+kv+lw)}$

 $F = f_1 e^{i\phi_1} + f_2 e^{i\phi_2} + f_3 e^{i\phi_3} + \dots$

 $F = \sum_{1}^{N} f_{n} e^{i\phi_{n}} = \sum_{1}^{N} f_{n} e^{2\pi i (hu_{n} + kv_{n} + lw_{n})}$

 $I \propto F_{hkl} F_{hkl}^* = \left| F_{hkl} \right|^2$

Examples

Unit cell has one atom at the origin

$$F = f e^{2\pi i 0} = f$$

In this case the structure factor is independent of *h*, *k* and *l*; it will decrease with *f* as $\sin\theta/\lambda$ increases (higher-order reflections)

🔹 Examples

Body-Centered Unit Cell

Face Centered Unit cell

The fcc crystal structure has atoms at 000, $\frac{1}{2}$, $\frac{1}{2}$,

$$F_{hkl} = \sum_{1}^{N} f_n e^{2\pi i (hu_n + kv_n + lw_n)} = f\left(1 + e^{\pi i (h+k)} + e^{\pi i (h+l)} + e^{\pi i (k+l)}\right)$$

- ◆ If *h*, *k* and *l* are all even or all odd numbers (``unmixed"), then the exponential terms all equal to $+1 \Rightarrow F = 4f$
 - If *h*, *k* and *l* are mixed even and odd, then two of the exponential terms will equal -1 while one will equal $+1 \Rightarrow F = 0$

$$\left| F_{hkl} \right|^{2} = \begin{cases} 16f^{2}, & h, k \text{ and } / \text{ unmixed even and odd} \\ 0, & h, k \text{ and } / \text{ mixed even and odd} \end{cases}$$

The Structure Factor

$$F_{hkl} = \sum_{1}^{N} f_n e^{2\pi i (hu_n + kv_n + lw_n)}$$

 $F_{hkl} = \frac{\text{amplitude scattered by all atoms in a unit cell}}{\text{amplitude scattered by a single electron}}$

- The structure factor contains the information regarding the types (f) and locations (u, v, w) of atoms within a unit cell
- A comparison of the observed and calculated structure factors is a common goal of X-ray structural analyses
- The observed intensities must be corrected for experimental and geometric effects before these analyses can be performed

Integrated Intensity

Peak intensity depends on

Structural factors: determined by crystal structure

Specimen factors: shape, size, grain size and distribution, microstructure

Instrumental factors: radiation properties, focusing geometry, type of detector

We can say that: $I(q) \propto |F(q)|^2$

Integrated Intensity

$I_{hkl}(q) = K \times p_{hkl} \times L \times P \times A \times T \times E_{hkl} \times |F(q)|^{2}$

K- scale factor, required to normalize calculated and measured intensities.

 p_{hkl} – multiplicity factor. Accounts for the presence of symmetrically equivalent points in reciprocal lattice.

L – Lorentz multiplier, defined by diffraction geometry.

P- polarization factor. Account for partial polarization of electromagnetic wave.

A – absorption multiplier. Accounts for incident and diffracted beam absorption.

 T_{hkl} – preferred orientation factor. Accounts for deviation from complete random grain distribution.

- E_{hkl} extinction multiplier. Accounts for deviation from kinematical diffraction model.
- F_{hkl} the structure factor. Defined by crystal structure of the material

The Multiplicity Factor

- The multiplicity factor arises from the fact that in general there will be several sets of *hkl*-planes having different orientations in a crystal but with the same *d* and *F*² values
- Evaluated by finding the number of variations in position and sign in $\pm h$, $\pm k$ and $\pm l$ and have planes with the same d and F^2
 - The value depends on *hkl* and crystal symmetry
 - For the highest cubic symmetry we have:

 100, $\overline{1}$ 00, 010, $0\overline{1}$ 0, 001, 00 $\overline{1}$ $p_{100} = 6$

 110, $\overline{1}$ 10, $1\overline{1}$ 0, $\overline{1}$ $\overline{1}$ 0, 101, 10 $\overline{1}$, $\overline{1}$ 0 $\overline{1}$, $\overline{1}$ 01, 011, 0 $\overline{1}$ 1, 01 $\overline{1}$, 01 $\overline{1}$, 0 $\overline{1}$ $\overline{1}$ $p_{110} = 12$

 111, 11 $\overline{1}$, $1\overline{1}$ 1, $1\overline{1}$ 1, $1\overline{1}$, $\overline{1}$ 1, $\overline{1}$ 1, $\overline{1}$ 1, $\overline{1}$ 1, $\overline{1}$ $p_{111} = 8$

The Polarization Factor

The polarization factor (assuming that the incident beam is unpolarized):

P

$$=\frac{1+\cos^2 2\theta}{2}$$

The Lorentz-Polarization Factor

The Lorenz factor L depends on the measurement technique used and, for the diffractometer data obtained by the usual θ -2 θ or ω -2 θ scans, it can be written as

$$L = \frac{1}{\sin\theta\sin2\theta} = \frac{1}{\cos\theta\sin^2\theta}$$

The combination of geometric corrections are lumped together into a single Lorentz-polarization (*LP*) factor:

The Absorption Factor

Angle-dependent absorption within the sample itself will modify the observed intensity
Path: $l = x_l + x_s$

where μ is the absorption coefficient, t is the total thickness of the film

The Extinction Factor

 Extinction lowers the observed intensity of very strong reflections from perfect crystals

In powder diffraction usually this factor is smaller than experimental errors and therefore neglected

The Temperature Factor

As atoms vibrate about their equilibrium positions in a crystal, the electron density is spread out over a larger volume

• This causes the atomic scattering factor to decrease with $\sin\theta/\lambda$ (or $|S| = 4\pi \sin\theta/\lambda$) more rapidly than it would normally:

Diffracted Beam Intensity

$$I \propto F_{hkl} F_{hkl}^* = \left| F_{hkl} \right|^2$$

$$I_{C}(q) = KAp(LP) |F(q)|^{2} + I_{b}$$

where *K* is the scaling factor, I_b is the background intensity, $q = 4\sin\theta/\lambda$ is the scattering vector for x-rays of wavelength λ

For thin films:

$$I_{C}(q) = K \left[1 - \exp\left(-\frac{2\mu t}{\sin\theta}\right) \right] \frac{1 + \cos^{2}2\theta}{\cos\theta\sin^{2}\theta} \left|F(q)\right|^{2} + I_{b}$$